

CIVIL GEOTECHNICAL SERVICES ABN 26 474 013 724 PO Box 678 Croydon Vic 3136 Telephone: 9723 0744 Facsimile: 9723 0799

27th June 2022

Our Reference: 21403:NB984 (Rev.1)

Winslow Constructors Pty Ltd 50 Barry Road CAMPBELLFIELD VIC 3061

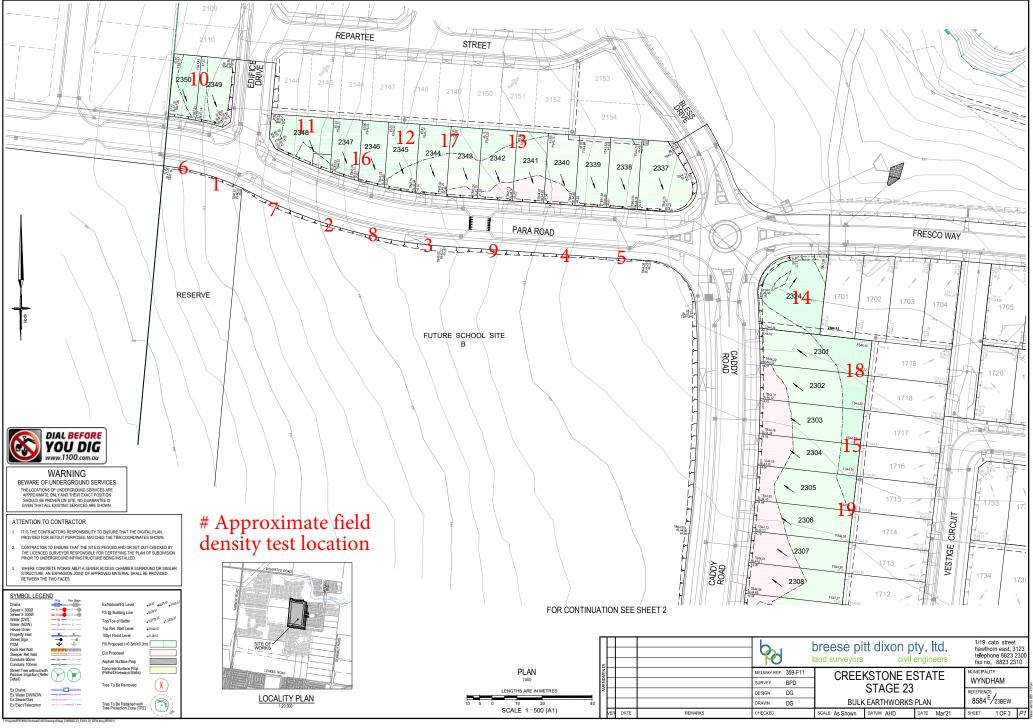
Dear Sirs/Madams,

RE: LEVEL 1 EARTHWORKS INSPECTION AND TESTING CREEKSTONE – STAGE 23 (TARNEIT)

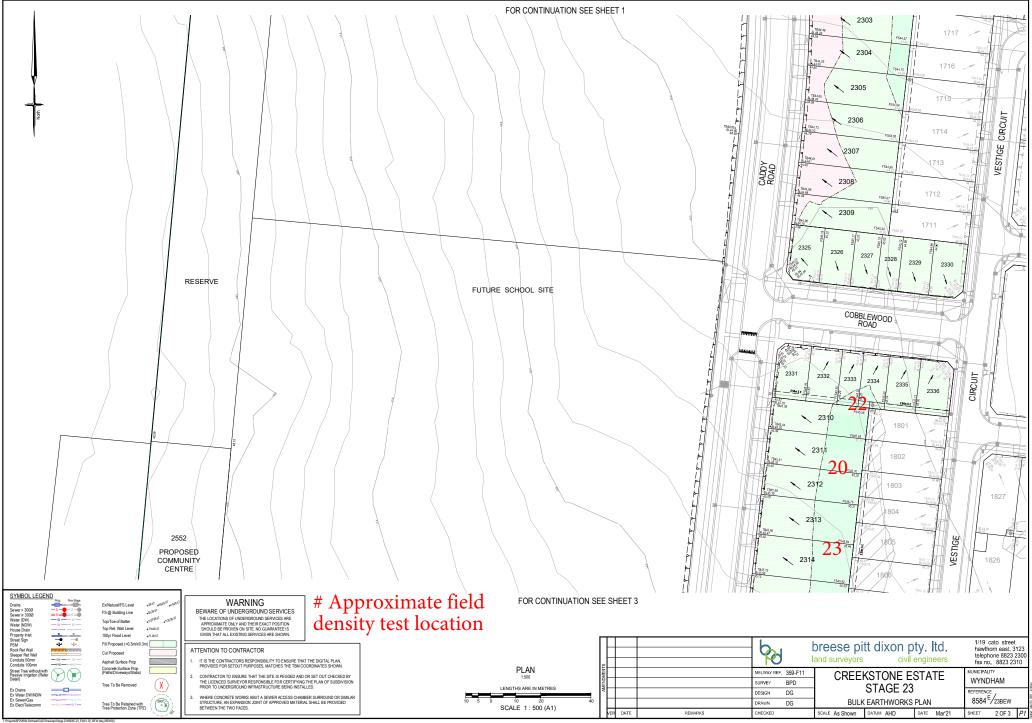
Please find attached our Report No's 21403/R001 to 21403/R007 which relate to the field density testing that was conducted within the filled allotments at the above subdivision. The level 1 inspections and associated field density commenced in June 2021 and was completed in June 2022.

The inspections and testing of the earthworks was undertaken in general accordance with the Level 1 requirements of AS 3798 - Guidelines on Earthworks for Commercial and Residential Developments.

The site inspection and testing was performed by experienced geotechnicians from this office. Any areas that were deemed unsatisfactory were reworked and retested under their supervision. The testing was performed to the relevant Australian Standards and the accompanying test reports carry NATA endorsement. The attached compaction results, which were located randomly throughout the fill profile, are considered to be representative of the bulk fill materials that were placed across the reported allotments by Winslow Constructors during the aforementioned period. The approximate locations of the field density tests can be seen on the attached plan (Figure 1).


We are of the view that the bulk fill materials that have been placed across the reported allotments by Winslow Constructors during the aforementioned period can be considered as having been placed in a controlled manner to a minimum density ratio of 95% (standard compactive effort).

Please contact the undersigned if you require any additional information.


Civil Geotechnical Services

Nick Brock

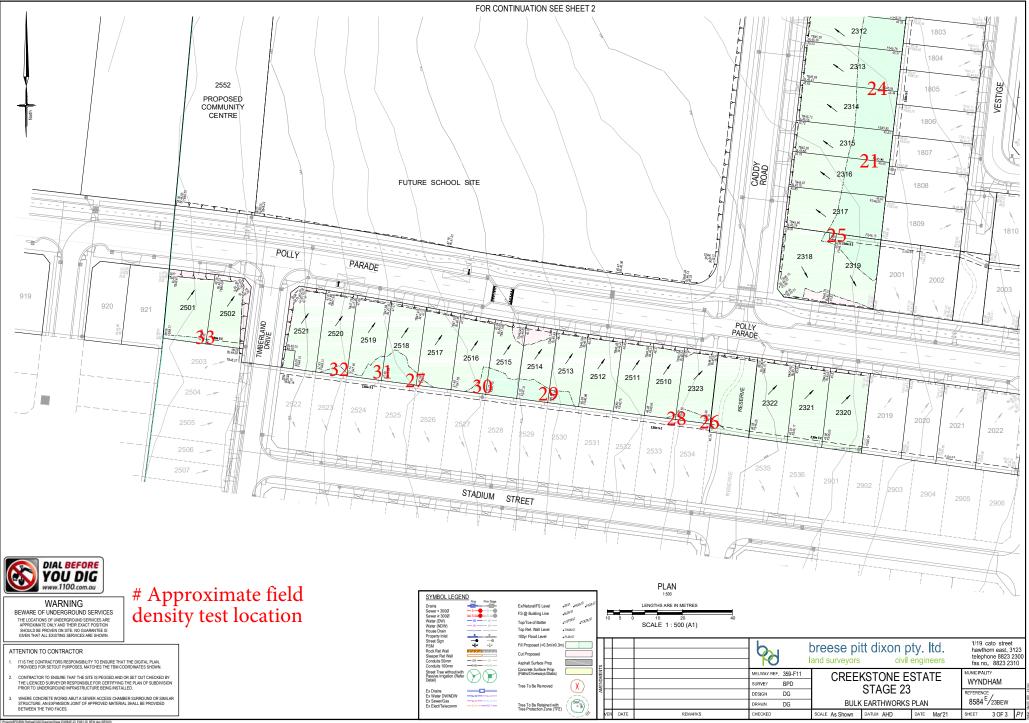

FIGURE 1 (1 of 3)

FIGURE 1 (2 of 3)

FIGURE 1 (3 of 3)

	HNICAL SERVICES e, Croydon 3136	CTOPS					Job No Report No Date Issued	
Client Project Location	WINSLOW CONSTRU CREEKSTONE - STAG TARNEIT		PTY LID (CA	AMPBELLFIE	:LD)		Tested by Date tested Checked by	BS 03/06/21 JHF
Feature	SWALE BACKFILL		Lay	er thickness	200 n	nm	Tim	e: 14:57
Test proced	ure AS 1289.2.1.1 & 5.8	8.1						
Test No			1	2	3	-	-	-
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate	depth below FSL							
Measuremen		тт	175	175	175	-	-	-
Field wet den Field moisture		<u>t/m³</u> %	1.90 24.4	1.88 27.2	1.91 21.9	-	-	-
Test No Compactive e	ure AS 1289.5.7.1		1	2	3 Stand	- ard	-	-
	retained on sieve	mm	19.0	19.0	19.0	-	-	-
Percent of ov	ersize material	wet	0	0	0	-	-	-
Peak Conver	ted Wet Density	t∕m³	1.98	1.92	1.94	-	-	-
Adjusted Pea	k Converted Wet Density	′ t/m³	-	-	-	-	-	-
Optimum Moi	isture Content	%	27.0	29.5	24.5	-	-	-
Moisi	ture Variation From		2.0%	2.0%	2.5%	-	-	-
Optim	um Moisture Content		dry	dry	dry			
Density Ratio	o (R _{HD})	%	96.0	98.0	98.5	-	-	-
Density Ratio		%				-	-	-

0

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

8 Rose Avenue, Croydon 3136	ES					Job No Report No Date Issued	21403 21403/R002 01/06/2021
Client WINSLOW COI Project CREEKSTONE Location TARNEIT		PTY LTD (CAMPBELLFIELD)				Tested by Date tested Checked by	BS 04/06/21 JHF
Feature SWALE BACK	FILL	Lay	er thickness	200 mm	ı	Time	: 15:02
Test procedure AS 1289.2.1	.1 & 5.8.1						
Test No		4	5	6	-	-	-
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth below FSL							
Measurement depth	mm	175	175	175	-	-	-
Field wet density Field moisture content	<u>t/m³</u> %	1.91 26.2	1.86 21.8	1.82 22.7	-	-	-
Test procedure AS 1289.5.7 Test No Compactive effort	.1	4	5	6 Standar	- :d	-	-
Oversize rock retained on sieve	e mm	19.0	19.0	19.0	<u>u</u>	-	
Percent of oversize material	wet	0	0	0	-	_	-
Peak Converted Wet Density	t/m ³	1.95	1.91	1.91	-		-
Adjusted Peak Converted Wet		-	-	-	-	_	-
Optimum Moisture Content	%	26.0	21.5	22.5	-	-	-
	n	0.0%	0.0%	0.0%	-	-	-
Moisture Variation Fror Optimum Moisture Cont	ent						

0

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

Approved Signatory : Justin Fry

8 Rose Avenue, Croydol							Job No Report No Date Issued	
	LOW CONSTRUCT KSTONE - STAGE EIT		PTY LTD (CA	MPBELLFIE	ELD)		Tested by Date tested Checked by	BGG 05/06/21 JHF
Feature SWAL	E BACKFILL		Lay	er thickness	200 n	nm	Time	ə: 12:33
Test procedure AS	1289.2.1.1 & 5.8.	1						
Test No			7	8	9	-	-	-
Location			REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1			
Approximate depth be	Now FSL							
Measurement depth		mm	175	175	175	-	-	-
Field wet density Field moisture content		t∕m³ %	1.74 24.6	1.86 28.8	1.77 26.9	-	-	-
Test procedure AS Test No Compactive effort	1289.5.7.1		7	8	9 Stand	-	-	-
Oversize rock retained	d on sieve	mm	19.0	19.0	19.0	-	-	
		wet	0	0	0	_		
Percent of oversize m		t/m ³	1.75	1.85	1.78	-		-
Peak Converted Wet I	-	t/m ³	-		- 1	-	-	-
Peak Converted Wet I Adjusted Peak Conve	rted Wet Density	t∕m³ %	- 27.0	- 31.5	- 29.0	-	-	-
Percent of oversize ma Peak Converted Wet I Adjusted Peak Conver Optimum Moisture Co	rted Wet Density		- 27.0	- 31.5	- 29.0	-	-	-
Peak Converted Wet I Adjusted Peak Conve	rted Wet Density Intent		- 27.0 2.5%	- 31.5 2.5%	- 29.0 2.0%	-		-
Peak Converted Wet I Adjusted Peak Conve Optimum Moisture Co	rted Wet Density Intent ation From					-	-	-

Approved Signatory : Justin Fry

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

8 Rose Avenue, Croydon 3136					Re Da	b No eport No ate Issued	21403 21403/R004 11/09/2021
Client WINSLOW CONSTRU Project CREEKSTONE - STAC Location TARNEIT		PTY LTD (CA	AMPBELLFIE	ELD)	Da	ested by ate tested necked by	JB 01/09/21 JHF
Feature SWALE FILL		Lay	er thickness	200	mm	Time:	13:00
Test procedure AS 1289.2.1.1 & 5.	8.1						
Test No		10	11	12	13	14	15
Location		REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
Approximate depth below FSL							
Measurement depth	mm	175	175	175	175	175	175
Field wet density Field moisture content	<u>t/m³</u> %	2.03 22.7	1.97 21.8	2.11 20.7	2.05 23.5	2.04 22.7	2.15 21.7
Test procedure AS 1289 5 7 1							
Test procedure AS 1289.5.7.1 Test No Compactive effort		10	11	12 Stan	13 Idard	14	15
•	mm	10	11 19.0			14	15 19.0
Test No Compactive effort Oversize rock retained on sieve	mm wet			Stan	dard		
Test No Compactive effort Oversize rock retained on sieve		19.0	19.0	Stan 19.0	dard 19.0	19.0	19.0
Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density	wet t/m³	19.0 0	19.0 0	Stan 19.0 0	dard 19.0 0	19.0 0	19.0 0
Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density	wet t/m³	19.0 0	19.0 0	Stan 19.0 0	dard 19.0 0	19.0 0	19.0 0
Test No Compactive effort Oversize rock retained on sieve Percent of oversize material	wet t/m ³ v t/m ³	19.0 0 2.06	19.0 0 1.99 -	Stan 19.0 0 2.13 -	dard 19.0 0 2.10 -	19.0 0 2.08 -	19.0 0 2.17 -
Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content	wet t/m ³ v t/m ³	19.0 0 2.06 - 25.0	19.0 0 1.99 - 24.0	Stan 19.0 0 2.13 - 20.0	idard 19.0 0 2.10 - 24.0	19.0 0 2.08 - 23.0	19.0 0 2.17 - 23.5

0

Approved Signatory : Justin Fry

W CONSTRUC TONE - STAGE /ORKS 89.2.1.1 & 5.8.	E 23		AMPBELLFIE rer thickness 17 REFER	LD) 200 18 REFER	Da Ch mm 19	20	JB 02/12/21 JHF 12:00 21
39.2.1.1 & 5.8.	.1	16 REFER TO	17	18	19	20	
	.1	REFER TO					21
		REFER TO					21
		REFER TO					
		TIGONE	TO FIGURE 1	TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1	REFER TO FIGURE 1
V FSL							
	mm	175	175	175	175	175	175
	t∕m³	1.85	1.85	1.84	1.88	1.94	1.88 28.7
89.5.7.1		16	17	18 Stan	19 dard	20	21
n sieve	mm	19.0	19.0			19.0	19.0
							0
	t/m³	1.90					1.93
	t∕m³	-	-	-	-	-	-
ent	%	23.0	27.0	23.5	26.0	23.5	29.5
on From		2.0%	2.0%	2.0%	1.5%	1.5%	0.5%
	relate c	dry only to the so	dry il to the depth	dry h of test and	dry not to the full	wet depth of the	dry laver
	%	97.5	97.5	96.5	97.0	97.0	97.5
	89.5.7.1 en sieve erial ensity ed Wet Density ent on From re Content ture ratio results	% 89.5.7.1 on sieve mm erial wet ensity t/m³ ed Wet Density t/m³ ent % on From re Content ture ratio results relate or	% 21.0 89.5.7.1 16 on sieve mm 19.0 erial wet 0 ensity t/m³ 1.90 ed Wet Density t/m³ - ent % 23.0 on From 2.0% dry ture ratio results relate only to the so -	% 21.0 25.3 89.5.7.1 16 17 on sieve mm 19.0 19.0 perial wet 0 0 perial wet 0 0 ensity t/m^3 1.90 1.89 ed Wet Density t/m^3 - - ent % 23.0 27.0 on From 2.0% 2.0% dry re Content dry dry dry ture ratio results relate only to the soil to the depting t_{0} t_{0}	% 21.0 25.3 21.4 89.5.7.1 16 17 18 Image: Stand St	% 21.0 25.3 21.4 24.2 $89.5.7.1$ 16 17 18 19 Standard on sieve mm 19.0 19.0 19.0 19.0 erial wet 0 0 0 0 erial wet 0 0 0 0 ensity t/m^3 1.90 1.89 1.91 1.94 ent % 23.0 27.0 23.5 26.0 on From 2.0% 2.0% 2.0% 1.5% grade only to the soil to the depth of test and not to the full	% 21.0 25.3 21.4 24.2 25.1 89.5.7.1 16 17 18 19 20 Standard on sieve mm 19.0 19.0 19.0 19.0 on sieve mm 19.0 19.0 19.0 19.0 or sieve mm 19.0 19.0 19.0 19.0 or sieve mm 19.0 19.0 19.0 0 0 or sieve mm 19.0 19.0 19.0 19.0 0

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing

0

CIVIL GEOTEC	HNICAL SERVICES	Job No Report No	21403 21403/R006
6 - 8 Rose Avenu	e, Croydon 3136	Date Issued	27/06/2022
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	JB
Project	CREEKSTONE - STAGE 23	Date tested	21/06/22
Location	TARNEIT	Checked by	JHF

Feature	EARTHWORKS	Layer thickness	200 mm	<i>Time:</i> 11:30

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		22	23	24	25	26	27
Location							
		REFER	REFER	REFER	REFER	REFER	REFER
		то	то	то	то	то	то
		FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE ²
Approximate depth below FSL							
Measurement depth	тт	175	175	175	175	175	175
Field wet density	t∕m³	1.97	1.95	1.92	1.94	1.89	1.95
Field moisture content	%	28.4	27.1	30.5	27.5	28.5	28.3
Test procedure AS 1289.5.7.1							
		22	23	24 Star	25 Indard	26	27
Test procedure AS 1289.5.7.1 Test No Compactive effort Oversize rock retained on sieve	mm	22 19.0	23 19.0		25 ndard 19.0	26 19.0	27 19.0
Test No Compactive effort Oversize rock retained on sieve	mm wet			Star	dard		
Test No Compactive effort Oversize rock retained on sieve Percent of oversize material		19.0	19.0	Star 19.0	ndard 19.0	19.0	19.0
Test No Compactive effort Oversize rock retained on sieve Percent of oversize material	wet	19.0 0	19.0 0	Star 19.0 0	dard 19.0 0	19.0 0	19.0 0
Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density	wet t/m³	19.0 0	19.0 0	Star 19.0 0	dard 19.0 0	19.0 0	19.0 0
Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density	wet t/m³ t/m³	19.0 0 2.00 -	19.0 0 2.01 -	Star 19.0 0 1.92 -	dard 19.0 0 2.01 -	19.0 0 1.96 -	19.0 0 1.96 -
Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density	wet t/m³ t/m³	19.0 0 2.00 -	19.0 0 2.01 -	Star 19.0 0 1.92 -	dard 19.0 0 2.01 -	19.0 0 1.96 -	19.0 0 1.96 -
Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content	wet t/m³ t/m³	19.0 0 2.00 - 27.5	19.0 0 2.01 - 26.5	Star 19.0 0 1.92 - 28.0	ndard 19.0 0 2.01 - 27.5	19.0 0 1.96 - 28.0	19.0 0 1.96 - 28.0
Test No Compactive effort Oversize rock retained on sieve Percent of oversize material Peak Converted Wet Density Adjusted Peak Converted Wet Density Optimum Moisture Content Moisture Variation From	wet t/m³ t/m³ %	19.0 0 2.00 - 27.5 1.0% wet	19.0 0 2.01 - 26.5 0.5% wet	Star 19.0 0 1.92 - 28.0 2.0% wet	ndard 19.0 0 2.01 - 27.5 0.0%	19.0 0 1.96 - 28.0 0.0%	19.0 0 1.96 - 28.0 0.5% wet

Material description

No 22 - 27 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry

CIVIL GEOTEC	CHNICAL SERVICES	Job No Report No	21403 21403/R007
6 - 8 Rose Avenu	e, Croydon 3136	Date Issued	27/06/2022
Client	WINSLOW CONSTRUCTORS PTY LTD (CAMPBELLFIELD)	Tested by	JB
Project	CREEKSTONE - STAGE 23	Date tested	22/06/22
Location	TARNEIT	Checked by	JHF

	Feature	EARTHWORKS	Layer thickness	200 mm	<i>Time:</i> 12:15
--	---------	------------	-----------------	--------	--------------------

Test procedure AS 1289.2.1.1 & 5.8.1

Test No		28	29	30	31	32	33
Location							
		REFER	REFER	REFER	REFER	REFER	REFER
		то	то	то	то	то	то
		FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE 1	FIGURE
Approximate depth below FSL							
Measurement depth	тт	175	175	175	175	175	175
Field wet density	t∕m³	1.93	1.93	1.97	1.94	1.90	1.93
Field moisture content	%	26.3	25.3	28.4	27.5	28.6	29.5
Test No Compactive effort		28	29	30 Star	31 Idard	32	33
Oversize rock retained on sieve	mm	19.0	19.0	19.0	19.0	19.0	19.0
Percent of oversize material	wet	0	0	0	0	0	0
Peak Converted Wet Density	t∕m³	2.00	1.99	2.00	1.96	1.95	2.01
Adjusted Peak Converted Wet Density	t∕m³	-	-	-	-	-	-
Optimum Moisture Content	%	27.0	25.0	28.0	27.5	28.5	29.5
Moisture Variation From		0.5%	0.5%	0.5%	0.0%	0.0%	0.0%
		dry	wet	wet			
Optimum Moisture Content							
Optimum Moisture Content density and moisture ratio results	relate c		il to the dept	h of test and	not to the ful	I depth of the	e layer

Material description

No 28 - 33 Clay Fill

NATA Accredited Laboratory No 9909 Accredited for compliance with ISO/IEC 17025 - Testing AVRLOT HILF V1.10 MAR 13

Approved Signatory : Justin Fry